
How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 1

Stu Henderson’s Clear Explanation of

Effective z/OS Security Auditing

(A Brief Description of the Steps to a Proven Practical Audit Program,

Without Much Technical Detail)

Stu Henderson
The Henderson Group
5702 Newington Road
Bethesda, MD 20816

(301) 229-7187
www.stuhenderson.com

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 2

Abstract:

IS (Information System) audits are sometimes not well received or are thought to
be irrelevant. In this session, Stu shows you a practical audit program for MVS (z/OS)
security that produces meaningful findings and recommendations. The approach
described here will result in more effective audits and can be used to good advantage
by security administrators and system programmers as well. Stu shows you how to
change the focus of an audit from a judgmental, checklist-based approach to one that
emphasizes impartial evaluation of the tools available to systems management.

I Introduction

 This paper shows you how to conduct z/OS mainframe audits, specifically
security audits of IBM’s MVS operating system software for mainframe computers.
(Note that z/OS is a package of software programs which includes the MVS operating
system. MVS is comparable to UNIX or Windows. It is the program that starts up when
the computer is turned on. It controls all users, programs, and resources on the
computer.)

This paper does not address security software (such as CA ACF2™ for z/OS

(CA ACF2), CA Top Secret® for z/OS (CA Top Secret), or IBM’s RACF) except as
they affect operating system security.

 Please note that a weakness in MVS security will undermine the reliability of the
security software. In the other direction, weak security software implementation will
undermine MVS security.

 The approach we use here avoids rote checklists and criticisms of how a given
installation functions. We start instead with the hardware controls that form the basis of
MVS security. IBM gives us written assurance that MVS reliably uses these hardware
controls to prevent users from interfering with each other and with MVS itself. IBM also
gives us several standard techniques (or “backdoors”) for system programmers to add
programs to the system with privileges which bypass the hardware controls. (This
paper will not explain the details of the hardware controls, nor the details of the
techniques such as APF (Authorized Program Facility) authorization used to give
programs these privileges. For more details on this, please see the Further Information
resources at the end of this paper.)

We will illustrate our approach with examples from two software products: CA

Auditor for z/OS (CA Auditor, which many people still call by its old name: CA
Examine) and CA Compliance Manager for z/OS (CA Compliance Manager), both
from CA Technologies, which used to be called Computer Associates.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 3

Who This Is For and What You Should Expect

This paper is designed for IS (Information Systems) auditors who will be

conducting mainframe audits, as well as system programmers and security
administrators, and those responsible for self-assessment reviews in advance of
scheduled audits. It assumes some basic knowledge of mainframes and auditing.

Readers will find that there is no in-depth explanation here of how the hardware

controls and backdoors work. That would require a much larger document. Instead,
readers will learn the basic steps to an effective MVS security audit, with the
understanding that any needed technical knowledge can be acquired elsewhere and fit
neatly into the framework presented here.

The Hardware Controls and the Integrity Statement

 IBM mainframe computers (the “z series”) have three hardware controls which
form the basis of all MVS security. We list them here with a brief description of what
each one does:

 The Supervisor State Switch (restricts when a program can execute privileged
hardware instructions [such as the instruction to change the date and the
instruction which writes directly to a disk drive])

 Protect Keys (restrict what memory a program can update or read)

 Address Spaces (restrict what memory a program can touch)

The MVS operating system uses these three controls to build a virtual cage around
each program running on the computer. This virtual cage prevents each program from
interfering with other programs executing at the same time, and also from interfering
with MVS itself.

 These hardware controls and the virtual cages MVS constructs from them are the
basis of MVS security. This architecture is so solid that IBM provides us with written
assurance that no program can break out of its virtual cage unless you modify the
system to permit this. This assurance is in the form of IBM’s Integrity Statement for
MVS, details of which may be found at the end of this document.

IBM also provides several standard methods for you to modify the system to give
a specified program privileges which permit it to break out of its virtual cage. Such
programs (called “privileged programs” or “back doors”) can bypass all security on
the system, including that provided by CA ACF2, CA Top Secret, and IBM’s RACF.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 4

 Such modifications to the system are not covered by IBM’s Integrity Statement
for MVS. IBM rightly considers data center management responsible for ensuring that
these modifications do not introduce security exposures to your system.

 The standard ways IBM gives us to permit a program to break out of its virtual
cage are:

 User Supervisor Calls

 APF Authorization and TSO APF Authorization

 I/O Appendages

 Functional Sub-Systems

 Exits (assembler or REXX language programs which can modify the logic of
standard software)

 The Program Properties Table

 Various methods (such as SRB scheduling) to cross address space boundaries.
This audit program will not center on address space backdoors, since they are
effectively controlled by automatic means.

A typical mainframe installation may have hundreds of such backdoors. The

concept of a backdoor is not good or bad. It is practical. (You may have a backdoor on
your house. Your insurance agent expects you to lock it at night.) We need to be able
to know however that they don’t introduce security exposures to our systems.

Our audit approach assumes that IBM’s Integrity Statement provides us with
sufficient assurance that the MVS security architecture can be relied upon. So we start
by identifying all the instances where the system programmers have added privileged
programs to the system, since these are not covered by the Integrity Statement.

What We Are Auditing and How

 Our job as auditors is not to evaluate these privileged programs. Rather it is to
evaluate the tools available to system programming management for them to know
that the backdoors:

 Have All Been Approved (that is, should be there)

 Are Safe (which means “doesn’t permit unauthorized users or programs to
break out of their virtual cages)

 Cannot Be Modified Without Authorization and Detection

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 5

Answers to these questions will help the financial auditors to address their own
questions regarding numbers processed on the mainframe:

 Are the numbers reliable?

 Are assets protected (including information assets and information processing
assets)?

 Is the organization in compliance?

 Is it a going concern (likely to stay in business in the future)?

So What Is the Risk?

 The essential issue here is control of the ability to update Key Datasets, since
any programmer who can update them can add or modify backdoor programs that
bypass all the security on the system, including that provided by CA ACF2, CA Top
Secret, and RACF. The Key Datasets are those where the backdoors are specified
and those where they reside.

 Here is how the different types of backdoor relate to the Key Datasets:

 User Supervisor Calls (these programs reside in the dataset SYS1.NUCLEUS or
in the LPALIST datasets

 APF Authorization and TSO APF Authorization (these programs all reside in
datasets which have been flagged as APF-authorized)

 I/O Appendages (acquire their privileges through APF authorized datasets)

 Functional Sub-Systems (acquire their privileges through LINKLIST datasets)

 Exits (assembler or REXX language programs which can modify the logic of
standard software) (Many exits reside in APF-authorized or other system
datasets.)

 The Program Properties Table (Programs listed in this table only receive
privileges if they reside in APF-authorized libraries.)

 All these backdoors are specified in the parmlib datasets

In other words, any programmer who can update (write to) such datasets can
introduce or modify programs which can bypass all the security on the system. We
want to know that management can provide reasonable assurance that these programs
do not introduce security exposures to the system.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 6

II The Audit Program

 Our audit program examines both what is happening on the system right now
and also the procedures which are meant to ensure good system security. By
concentrating on established, agreed-upon facts, we avoid the subjective opinions and
disparaging tone of voice which can otherwise make IS audit reports irritating to read.

Here are the steps to our audit program:

1. Purpose and Control Objectives
2. Identify the Datasets Where the Backdoors Are Specified and the Datasets

Where They Reside
3. Evaluate the Security Software Rules Covering These Datasets
4. Evaluate Logging, Reporting, and Review of Updates to These Datasets
5. Evaluate the Process for Adding / Modifying Backdoor Programs
6. Determine “How Does Management Know That the Backdoors Are Safe?”
7. Determine “How Does Management Know That Each Backdoor on the

System Has Been Approved?”
8. Determine “How Does Management Know That Each Backdoor Can’t Be

Modified Without Approval?”
9. Summarize, Review, Report

1. Purpose and Control Objectives

Again, the purpose of our audit is to evaluate the tools available to system

programming management for them to know, and for them to be able to demonstrate,
that the backdoors on the system:

 Have All Been Approved

 Are Safe

 Cannot Be Modified Without Authorization and Detection

These tools can be:

 Procedures such as those for evaluation of how safe system software is
and for controlling system software changes

 Restrictions, such as rules in security software restricting who can modify
system datasets

 Monitoring such as review of reports describing system software changes

You should be able to relate these objectives to the financial audit control

objectives.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 7

2. Identify the Datasets Where the Backdoors Are Specified and the
Datasets Where They Reside

The Key Datasets are the ones where the backdoors are specified and the ones
where they reside. You need to learn their dataset names in order to learn who can
change them. They include: the parmlibs, the APF authorized datasets, the LPALIST
and LINKLIST libraries, and certain standard Key datasets. (Note that a library is just a
type of dataset containing programs, lists of options, or other information.)

The backdoors are all specified by your system programmers in datasets called

the parmlibs. Originally there was just one parmlib, always named SYS1.PARMLIB.
IBM has since made it possible to have several datasets serve together as parmlibs,
each with a different name. You will start your data gathering by identifying which
datasets are the parmlibs.

When the MVS operating system starts up, it reads the parmlibs to determine

which backdoor programs to add to the system. MVS then builds internal tables in
memory describing the backdoors and where to find them. Each backdoor is a
program with privileges that let it bypass all the security on the system.

(Any programmer can browse these tables to learn what backdoors are on the

system. If any of these backdoors introduces a security weakness, it can then be
abused by any programmer who knows enough to find it and analyze it.)

The backdoors reside in other datasets, including standard ones such as

SYS1.LINKLIB, SYS1.LPALIB, SYS1.NUCLEUS, and SYS1.SVCLIB. They also
include others such as the APF (Authorized Program Facility) datasets, the LPALIST
libraries, and the LINKLIST libraries.

There are 3 basic ways of learning the names of these datasets:

A. Browse the Parmlibs the Same Way MVS Does to Learn the Names of the

Key Datasets

B. Browse the Tables in Memory Where MVS Stores the Names

C. Use Software to Browse the Tables and Report on the Names

A. Browse the Parmlibs the Same Way MVS Does to Learn the Names of

the Key Datasets: You can learn which backdoors have been specified, and
what datasets they reside in, by reading the information from the parmlibs.
You can learn the names of the parmlib datasets by issuing the operator
command DISPLAY PARMLIB. The IBM manuals ”MVS Initialization Tuning
and Reference” and “MVS Initialization and Tuning Guide” describe the
contents of the parmlibs and how to use them. (You start by reading the

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 8

members whose names begin IEASYS.. , which point to other members
where the backdoors are specified.) A complete description of how to
interpret the parmlibs is beyond the scope of this paper. This approach
requires understanding of how to read the parmlibs and how the backdoors
function. We will not address this approach any further in this paper.

B. Browse the Tables in Memory Where MVS Stores the Names: The
starting point for this is address 16 in memory which has the address of the
CVT or Communications Vector Table, which is considered the “mother of all
MVS control blocks”. This requires use of a tool to browse memory. It also
requires knowledge of the control blocks MVS uses, and the ability to add
hexadecimal numbers. This approach will not be addressed in this paper.

C. Use Software to Browse the Tables and Report on the Names: Your
security software (CA Top Secret or RACF, but to my knowledge not CA
ACF2) may report a few of the dataset names. For a complete list, you need
a software tool designed to report on all the backdoors, all the datasets where
they are specified, and all the datasets where they reside. We will use the
best-known of these, CA Auditor, to illustrate our approach.

To get a partial list of key datasets from your security software in a CA

TopSecret installation, you can use the TSSAUDIT utility program to produce
a list of many of the backdoors, including User Supervisor Calls, APF
Authorized datasets, and the Program Properties Table.

To get a partial list of key datasets in a RACF installation you can use

the SELECTED DATASETS REPORT and the PROGRAM PROPERTIES
TABLE report from the DSMON utility. This will give you the Program
Properties Table, as well as the names of APF-authorized and other key
datasets.

An easier, and more comprehensive method is to use the program CA Auditor,

(which originally was named CA EXAMINE). This program browses all the control
blocks in memory where MVS has saved the specifications for backdoors. After this,
CA Auditor prints a report listing the names of the parmlibs, all the backdoors, what
datasets they reside in, and much more information about the system.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 9

To help you see how these reports work, here are edited examples of CA
Auditor reports showing: the names of the parmlibs and various backdoors, including:
the User Supervisor Calls, APF Authorized datasets, and the Program Properties Table:

 CA AUDITOR PARMLIB DATASET INFORMATION

 SYSTEM AND PARMLIB DATASET INFORMATION

 STATIC SYSTEM INFORMATION

 ===

 …

 MASTER CATALOG = ICF.MASTER.STU06

 VOLUME = STUA06 ADDRESS = 1A6B

 MASTER JCL SOURCE IS SYS1.LINKLIB(MSTJCL00) ON VOLUME STU002

 …

CURRENT PARMLIB CONCATENATION

 ===

…

 LOGICAL PARMLIB DATASETS SPECIFIED IN LOAD06 MEMBER INCLUDE:

 1. SYSSTU2.MYSTUFF.PARMLIB ON VOLUME STU003

 2. SYS1.PARMLIB ON VOLUME STU007

Abridged Illustration of CA Auditor Report Listing the Parmlib Datasets. Large type indicates the dataset

names and volumes.

 CA AUDITOR USER SVC ANALYSIS

 THERE ARE 13 ACTIVE AND 43 INACTIVE USER SVCS DEFINED ON THIS SYSTEM.

 ENTER S BESIDE SVC NUMBER FOR MORE INFORMATION, OR D TO UPDATE DESCRIPTION.

 ENTRIES RECOMMENDED FOR REVIEW ARE MARKED "*".

 NUMBER AR

 DEC HEX TYPE ACTIVE APF LOCKS MODE DESCRIPTION

 - --- --- ---- ------ --- ------- ---- ------ --------------------------

 204 CC 2 NO NO NO INSTALLATION DEFINED SVC

 205 CD 3 YES NO NO LOCK NO INSTALLATION DEFINED SVC

 206 CE 2 NO NO NO INSTALLATION DEFINED SVC

 209 D1 2 NO NO NO INSTALLATION DEFINED SVC

 210 D2 3 YES NO NO LOCK NO INSTALLATION DEFINED SVC

 227 E3 3 YES NO NO LOCK NO IBM'S NETVIEW PROGRAM PRODUCT

 241 F1 2 NO NO NO INSTALLATION DEFINED SVC

 * 242 F2 3 YES NO NO LOCK NO INSTALLATION DEFINED SVC

 246 F6 3 YES NO NO LOCK NO INSTALLATION DEFINED SVC

 247 F7 2 NO NO NO INSTALLATION DEFINED SVC

 248 F8 2 NO NO NO INSTALLATION DEFINED SVC

 249 F9 2 NO NO NO INSTALLATION DEFINED SVC

 250 FA 4 YES NO NO LOCK NO CA-ASM2 ALLOCATION MANAGER

 * 251 FB 3 YES NO NO LOCK NO INSTALLATION DEFINED SVC

Abridged Illustration of CA Auditor Report Listing User Supervisor Calls

(Only entries with YES in ACTIVE column are active. The programs which are the User Supervisor Calls

usually reside in either the dataset SYS1.NUCLEUS or in one of the LPA libraries.)

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 10

 CA AUDITOR APF LIBRARY STATISTICS SUMMARY

 PRESS ENTER FOR DETAILED DISPLAY.

 +------- APF LIST INFORMATION ---------+------- LINK LIST INFORMATION -------+
 | | |

 | LIBRARY NAMES SPECIFIED: 771 | APF LIBRARIES SPECIFIED: 85 |

 CA AUDITOR APF LIBRARY STATISTICS

 ENTER B NEXT TO NAME TO BROWSE, F TO FREEZE, OR A FOR SECURITY ACCESS.

 ---APFLIST--- -MEMBERS--
 NAME --AUTH WITH-- AUTH VIA TOTAL
 VOLUME COMMENTS SMS VOLUME LINKLIST AC=1 PCT
 - ------ ------------------------------ ----- ------ -------- ----- -----

 CICSCA06.CTS220.CICS.SDFHLOAD 799

 STU009 NO YES NO 0 0.00

 CICSCA06.CTS320.CICS.SDFHAUTH 70

 STU008 NO YES NO 6 8.57

 REXX.SFANLMD 2

 STU007 NO YES YES 0 0.00

Illustration of Abridged CA Auditor Report Listing the APF Authorized Datasets. Top of page shows counts of

APF Authorized Datasets. Bottom Part Shows Listing of Their Names.

 CA AUDITOR PROGRAM PROPERTIES TABLE ANALYSIS

 THERE ARE 403 PROGRAMS DEFINED IN THE PPT. ITS VERSION ID IS: 0
 ENTRIES MARKED "*" ARE RECOMMENDED FOR REVIEW.
 ENTER I OR S NEXT TO PROGRAM NAME FOR ADDITIONAL INFORMATION OR LIBRARY SEARCH.

 DATASET SMF PREF
 PROGRAM WHERE INTEG SECURITY NON- TIMING CPU STOR
 NAME SOURCE FOUND BYPASS KEY BYPASS CANCEL SWAP BYPASS AFFN FLAG
 - -------- ------ -------- ------- --- -------- ------ ---- ------ ---- ----
 AHLGTF IBM IEFSDPPT NO 0 NO YES NO YES ALL 001
 AKPCSIEP IBM IEFSDPPT YES 1 NO NO NO YES ALL 001
 BPXBATA2 IBM IEFSDPPT NO 2 NO NO YES NO ALL
 * SMFDUMP USER SCHED13 NO 8 YES NO YES NO ALL

 CA AUDITOR PPT LIBRARY SEARCH

 403 MEMBER(S) WERE SELECTED FOR THIS SEARCH OF ALL ELIGIBLE PPT LIBRARIES.
 ENTER B NEXT TO PROGRAM NAME TO BROWSE, F TO FREEZE.

 PROGRAM LINK DATE SIZE VOLUME LIBRARY NAME
 - -------- --------- ------ ---- ---------------------------------

 DFHSIP 10/11/02 146620 STU06A CICSSTU3.CTS220.CICS.SDFHAUTH

 DSNYASCP 04/19/01 004E90 CICST9 SYS2.DB2510.SDSNLOAD

 EZBTCPIP 09/11/09 00BAC8 STUMVS TCPIP.SEZALOAD

Illustration of CA Auditor Reports Listing Program Properties Table

(Only programs which reside in APF authorized datasets are affected. Top of this listing shows programs

described in the table. Bottom part lists datasets or libraries where they reside.)

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 11

3. Evaluate the Security Software Rules Covering These Datasets

 Whether your security software is CA ACF2, CA Top Secret or IBM’s RACF, list
the dataset rules for the Key Datasets identified in the previous step. From the rules,
determine who can update the datasets. These datasets should include:

 The parmlibs

 The APF (Authorized Program Facility) Datasets LPA (Link Pack Area) Libraries
and often LINKLST libraries

 SYS1.LINKLIB, SYS1.NUCLEUS, SYS1.LPALIB, and SYS1.SVCLIB

 Using CA ACF2 as an example, here is the command to list the rules for all
datasets whose names begin with SYS1., along with an extract of the resulting report.
The first line starting PARMLIB describes who can update (that is, WRITE to) the
dataset SYS1.PARMLIB, that is everyone whose UID string matches the pattern xxx.
(A UID string is an ACF2 construct made up of various fields from the user record in
the ACF2 database, for example, Department, Jobcode, and Employee Number. The
second PARMLIB line permits everyone whose UID string is any three characters
followed by YYY to READ and WRITE this dataset.

 Of course, in ACF2 you need to issue follow-on commands to learn all the users

whose UID strings match XXX:

ACF

SET RULE

LIST SYS1

*ACCESS RULE SYS1 STORED BY STU ON 12/28/10-15:32

$KEY(SYS1)

* -------------------------- *

* SYS1.PARMLIB ACCESS

* -------------------------- *

 PARMLIB UID(XXX) WRITE(L)
 PARMLIB UID(***YYY) READ(A) WRITE(A)
* -------------------------- *

Illustration of CA ACF2 commands to list dataset rule for SYS1 with abridged listing of output. (Listing

begins with the line *ACCESS RULE SYS1 ….

Any line beginning with an * is a comment. Enlarged type added to highlight the PARMLIB lines.

ACF

SET LID

SET VERBOSE

LIST UID(XXX)

CA ACF2 commands to list all LIDs (LOGONIDs, that is, userids) whose UID string matches XXX

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 12

 Using CA Top Secret as an example, here is the command to list the rules for all
datasets whose names begin with SYS1., along with an extract of the resulting report.
Each pair of lines starting with XAUTH describes one permission. The second pair for
example states that the ACID (user) STU001 has total (ALL) access to the dataset
named SYS1.SVCLIB.

TSS WHOHAS DSN(SYS1)

DATASET = SYS1 OWNER(STUDEPT)

 XAUTH = SYS1. ACID(*ALL*)

 ACCESS = READ

 XAUTH = SYS1.SVCLIB ACID(STU001)
 ACCESS = ALL

 XAUTH = SYS1.SVCLIB ACID(STUSBUDS)

 ACCESS = ALL

 XAUTH = SYS1.SVCLIB ACID(STUSPALS)

 ACCESS = ALL

Illustration of CA Top Secret Command to List Dataset Rule for SYS1, with abridged listing of output.

(Output begins with line DATASET = SYS1. Blank lines and enlarged type added for readability.)

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 13

 Using IBM’s RACF as an example, here is the command to list the rules for all
datasets whose names begin with SYS1., along with an extract of the resulting report.
The UNIVERSAL ACCESS is the default access. The line starting STU002 says that
STU002 has update access. The line below that says that STUSPALS have read
access to the dataset.

 Listing the dataset rules from the security software tells you who can update
these datasets.

 If you used CA Auditor to identify the Key Datasets, you can use its ACCESS
command (or type an A next to the name of the dataset of interest) to list the contents of
the dataset rule protecting the dataset. This works whether you have CA ACF2, CA
Top Secret, or IBM’s RACF. An example follows on the next page.

LISTDSD PREFIX(SYS1) ALL

INFORMATION FOR DATASET SYS1.SVCLIB (G)

LEVEL OWNER UNIVERSAL ACCESS WARNING ERASE

----- -------- ---------------- ------- -----

00 STU001 NONE NO NO

AUDITING

SUCCESS(UPDATE)

ID ACCESS

------- -------

STU002 UPDATE
STUSPALS READ

Edited and Abridged Illustration of RACF Command to List Dataset Rule for SYS1, with abridged listing of

output. (Output begins with line INFORMATION FOR. Blank lines and enlarged type added for

readability.)

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 14

 CA AUDITOR APF LIBRARY STATISTICS SUMMARY

 CA AUDITOR APF LIBRARY STATISTICS

 ENTER B NEXT TO NAME TO BROWSE, F TO FREEZE, OR A FOR SECURITY ACCESS.

 ---APFLIST--- -MEMBERS--

 NAME --AUTH WITH-- AUTH VIA TOTAL

 VOLUME COMMENTS SMS VOLUME LINKLIST AC=1 PCT

 - ------ ------------------------------ ----- ------ -------- ----- -----

 A CICSCA06.CTS220.CICS.SDFHLOAD 799

 STU009 NO YES NO 0 0.00

 DATASET ANALYSIS AND ACCESS INFORMATION

 Data Set Security Analysis For ACF2

 ACCESS Subcommand Results as of 01/01/11-14:10 for: CICSCA06.CTS220.CICS.SDFHLOAD

 Key: CICSA06

 Ruleline: - VOL(STU***) UID(SALES***) READ(A) WRITE(L) EXEC(A)

 Lids: STU007 STU27A PAYROLL SYSPROG1

Illustration of Abridged CA Auditor Report with A Typed in Requesting ACCESS, that is, Dataset Rule Listing,

Followed by Listing of the Matching Dataset Rule in ACF2.. Top of Page Shows Listing of APF Authorized Dataset

with A on extreme left. Bottom Part Shows Resulting Listing of the Dataset Rule, Combining Two Audit Steps into

One.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 15

4. Evaluate Logging, Reporting, and Review of Updates to These Datasets

You want to know whether management is informed of every update to these
datasets, since any such update can be the addition or modification of a privileged
program. (Privileged programs can bypass all security on the system.) For
management to be informed of every such update, the update must be logged to SMF
or detected in some other fashion. The security software rules can specify that updates
get logged or not.

 In the CA ACF2 example, look at the two lines starting PARMLIB. One of them
gives the permission as W(A) and the other as W(L). The W stands for WRITE. The A
for “Allow, but don’t bother logging”. The L for “Allow, but log”.

 In the CA Top Secret example, the word AUDIT on an XA line would indicate
that accesses by that permission get logged. Other ways to cause logging in CA Top
Secret include the AUDIT record and attributes on user ACIDs.

 In the RACF example, options to cause logging include options in SETR LIST
(the settting of RACF options), the AUDIT operand on the dataset rule (as in the
example), and the GLOBALAUDIT operand on the dataset rule (not illustrated), and
options on user records..

 You should be able to conclude that either all updates to these datasets get
logged, or not. If they are all logged, then ask to see the resulting report. Ask the
manager of system programming to describe how she reviews the report. Ask
specifically how she knows that each update described in the report has been
approved. (For example, are there change control tickets or similar documents that
could be compared to the list of updates.)

 Review any standards or procedures which require all such updates to be
logged, reported, and reviewed.

5. Evaluate the Processes for Adding / Modifying Backdoor Programs and
for Monitoring Changes to Them

 You will want to evaluate use of:

 Formal Procedures

 Security Software Restrictions on Updates

 Monitoring of Updates

 Automated Tools to Alert Management of Changes

 Program Signing

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 16

Formal Procedures

 Review any written procedures or standards describing the processes for control
of changes to Key Datasets, and interview system programmers to see how they work.
Summarize whether unauthorized backdoors could be on the system and whether they
could be added to the system without detection.

 Security Software Restrictions on Updates

 These procedures will have to rely on the security software rules restricting who
can update Key Datasets, as discussed in section 3 above. Summarize who can
update them, and whether updates get logged.

 Monitoring of Updates

 Monitoring doesn’t prevent unauthorized changes, but can make it possible for
management to be aware of unauthorized changes shortly after they happen. For
monitoring to be effective, the following will all be necessary:

 Each update to one of these Key Datasets is logged: to SMF, to the
SYSLOG, to the security software log, or to some other reliable log file

 The log records are processed every day to produce a report of who made
changes to key datasets

 The report is read, and properly processed, which means that each such
change in the report is compared to some standard, such as a change
control ticket or a written approval

 Automated Tools to Alert Management of Changes

 In addition, the processes to control changes to Key Datasets may make use of
software tools to detect and report (often in realtime) on any changes to these Key
Datasets. For such tools to be effective, they need to:

 Detect all changes to Key Datasets

 Provide alerts or realtime notifications to management

CA Auditor provides one approach to detect changes: it collects and records a
baseline listing of various backdoors on the system. Subsequent checks compare the
current backdoors to this baseline, reporting any changes.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 17

We illustrate another approach with a different product: CA Compliance
Manager. This product can monitor changes to Key Datasets based on the direction
you give it. It can monitor these types of dataset: LPALIST, LINKLIST, APFLIST, and
PARMLIB. This includes monitoring changes both to the lists of Key Datasets and
monitoring of changes to the datasets themselves. (CA Compliance Manager also
monitors other types of changes, such as security software option settings. These are
however outside the scope of this paper.)

Illustration of CA Compliance Manager Panel. Note the Checkboxes Halfway Down the Screen
Below the Line “Monitor the Datasets in These Lists”. The Checkboxes Permit Setting of Policy to
Monitor Any of: APFLIST, LINKLIST, LPALIST, and PARMLIBs.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 18

 Program Signing

 Program signing is a way of validating that a given program has not been
modified, and that it comes from the correct, trusted source. It uses Message Digests
(a mathematical method of generating a unique number based on the contents of a
program, and then encrypting the unique number [called a “hash total”] in a way that
can only be decrypted with the vendor’s public key. The details of this process are
beyond the scope of this paper.)

 IBM has provided within MVS automated methods to use these hash totals to
ensure that critical programs have not been modified and that they actually come from
the suppliers they are supposed to come from. In the future, use of these methods may
become widespread in identifying unauthorized changes to privileged programs.

6. Ask “How Does Management Know That the Backdoors Are Safe?”

 There are two basic approaches to know that a privileged program is “safe”, that
is, that it doesn’t introduce security exposures to the system. The first is to have formal
review of the source code of the privileged program, based on the principles IBM gives
us for writing safe privileged programs. These principles are provided in IBM classes
and also in the IBM manual, “MVS Programming: Authorized Assembler Services
Guide”.

 The second approach is needed when the software supplier is not willing to make
source code available for review. In that case, it makes sense to ask the vendor for an
integrity statement for their product comparable to IBM’s Integrity Statement for MVS
(Please note that CA Technologies provides a comparable Integrity Statement for all of
their software products, available on their website at:
http://arcserve.com/~/media/Files/TechnicalDocuments/common-integrity-statement.pdf .)

If they are not willing or able to provide this, would you want to pay them annual fees to
run their software on your system, giving their software privileges that bypass all
security on your system? If the system programming manager is not asking vendors
for integrity statements, the question arises “what is she then doing to know that all
privileged programs are safe?”.

 Your evaluation will consist of reviewing procedures, documentation of formal
reviews, and integrity statements from vendors. Inquire whether there are other
techniques in practice for management to know the backdoors are safe.

 If management does not have the tools to know and to demonstrate that the
backdoors are safe, what effect does this have on the financial audit?

http://arcserve.com/~/media/Files/TechnicalDocuments/common-integrity-statement.pdf

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 19

7. Ask “How Does Management Know That Each Backdoor on the System
Has Been Approved?”

The only way to know this is to have a comparison of the actual backdoors on the

system to an independent list of what has been approved, that is what should be on the
system. The standard could be a written list, a change control database, or software
that keeps track of changes made to the system, along with links to approval
documentation.

If system programming management does not agree with this, then offer to take

the list of backdoors and add one fake entry, and then to ask the manager how she
would identify the fake entry.

The CA Compliance Manager software product illustrated above gives you the

ability to take different actions when a change is detected, depending upon whether the
change has been approved. This product can also provide an automated link as well to
change control or other mechanisms for documentation of change approvals.

8. Ask “How Does Management Know That Each Backdoor Can’t Be
Modified Without Approval?”

 Review the security software rules to see who can update the key datasets, and
whether updates are logged and reviewed in a meaningful fashion. Evaluate any use of
program signing (described above) to verify that privileged programs haven’t been
modified improperly.

If management uses software which tracks changes to the system, you will want
to determine that the software covers all key datasets. Some such programs permit you
to maintain a list of key datasets to be monitored. Unless there is a reliable method to
keep the list up-to-date, this approach will be insufficient. For software to provide
complete assurance that all key datasets are being monitored, the software should
maintain this list automatically.

9. Summarize, Review, Report

 You can now summarize your answers to these three questions, based on the
information you have collected: Does management have adequate tools available to
them for them to know and to be able to demonstrate, that all backdoors on the system
not covered by IBM’s Integrity Statement:

 Have All Been Approved

 Are Safe

 Cannot Be Modified Without Authorization and Detection

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 20

Consider the effect of your findings on the financial audit and what you should be
communicating to the financial auditors.

Include practical recommendations where needed. (A good test of

reasonableness of each recommendation is to ask yourself if you would be happy being
responsible for carrying out each recommendation.)

 Review a draft of the report with the system programming manager and any
other interested parties. Invite corrections if you have missed any facts. Offer to
consider changes to wording which might make the report easier to receive. If you have
concluded that there could be more or better procedures or tools available to
management, ask management whether they would like to have such tools.

Invite comments on how your recommendations could be improved.

 Edit your report on the basis of what you have learned, and submit it.

 For More Technical Follow-On: If you have the technical knowledge, you
might extend your audit to include several more advanced topics:

 Dynamic changes to backdoors. After MVS starts up, additional changes or
additions to backdoors may be introduced by a variety of methods, including
operator commands, APIs (Application Programming interfaces), and by other
privileged programs. These are detected by software which scans control blocks
(such as CA Auditor and CA Compliance Manager), but not by techniques which
merely browse the parmlibs.

 The proclibs (which contain the JCL (Job Control Language) for started tasks).
Any programmer who can modify this JCL can cause rogue programs to execute
with the privileges of the started tasks.

 Additional datasets necessary for protecting system software, such as: the
SMF datasets (log files) and security software files

 APF authorization for USS programs, which can involve file attributes or the
sanctions list.

The techniques and tools describe above can easily be extended to address

these advanced topics. However, since our audit approach concentrates on the
tools available to management, the advanced topics may safely be left for a follow-
on audit.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 21

Examples of Two Different Audit Comments (With a Common Beginning)

 Example A: One Hundred thirty nine programs and datasets (other than those
provided by IBM) have been added to this computer system with privileges that permit
them to bypass all security on the system. Such programs and datasets are commonly
called “backdoors”. In this audit, we evaluated the controls available to IT management
for them to know and to be able to demonstrate that these backdoors:

 Are “safe”, that this they cannot be abused to access data improperly

 Cannot be modified without authorization and without detection

 Have been approved by IT management.

We determined that 17 programmers are able to modify these backdoors and to
add additional ones without authorization and without being detected. Information
Systems management does not maintain an independent list of which backdoors have
been authorized. We were therefore unable to determine whether the backdoors which
have been added to the system are ones that should be on the system.

Information Systems management does not require software vendors to provide

integrity statements (formal assurance that the software does not introduce security
exposures) for these backdoors. Information Systems management does not maintain
formal documentation of security reviews nor of other evidence that such programs are
safe.

Because other data centers have often found examples of such privileged

programs that introduce serious security exposures, Information Systems management
may want to improve controls over MVS security.

Financial audits which rely on the accuracy and confidentiality of information

maintained on these computers will need to consider this in their evaluation of
information security.

 Example B: One Hundred thirty nine programs and datasets (other than those
provided by IBM) have been added to this computer system with privileges that permit
them to bypass all security on the system. Such programs and datasets are commonly
called “backdoors”. In this audit, we evaluated the controls available to IT management
for them to know and to be able to demonstrate that these backdoors:

 Are “safe”, that this they cannot be abused to access data improperly

 Cannot be modified without authorization and without detection

 Have been approved by IT management.

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 22

We found that management has formal documentation of security reviews and
integrity statement from vendors for all such privileged programs. Our review of
a sample of twenty such documentation packages found …

We found that security software rules in this data center prevent unauthorized
updates to these backdoors, and cause management to be notified of any
changes to them. Management uses the following methods to verify that only
approved backdoors are on the system….

We conclude that the security of the MVS system software in this data center
may reasonably be relied up to support the security software. (A separate audit
addresses how well the security software protects sensitive production data.)

III Summary

 We have shown a practical approach to auditing MVS security, relying on
evaluation of the controls management has available to them to maintain the security of
the system. You should be able to relate your findings from this directly to the financial
audit objectives.

For Further Information:

 On IBM’s Integrity Statement for MVS:

First issued in 1973, IBM’s MVS
TM

 System Integrity Statement, and subsequent statements

for OS/390® and z/OS, has stood for over three decades as a symbol of IBM’s confidence in

and commitment to the z/OS operating system. IBM reaffirms its commitment to z/OS System

Integrity.

IBM’s commitment includes design and development practices intended to prevent

unauthorized application programs, subsystems, and users from bypassing z/OS security –

that is, to prevent them from gaining access, circumventing, disabling, altering, or obtaining

control of key z/OS system processes and resources unless allowed by the installation.

Specifically, z/OS “System Integrity” is defined as the inability of any program not

authorized by a mechanism under the installation’s control to circumvent or disable store or

fetch protection, access a resource protected by the z/OS Security Server (RACF®), or obtain

control in an authorized state; that is, in supervisor state, with a protection key less than

eight (8), or Authorized Program Facility (APF) authorized. In the event that an IBM System

Integrity problem is reported, IBM will always take action to resolve it.

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/pdf/zOS_System_Integrity_Statement.pdf
ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/pdf/zOS_System_Integrity_Statement.pdf

How to Audit z/OS Security

Copyright 2011, Stuart C. Henderson, All Rights Reserved Page 23

 IBM Manuals:

o MVS Programming: Authorized Assembler Services Guide SA22-
7608-15

o MVS Initialization and Tuning Reference SA22-7592-21

o IBM Principles of Operations SA22-7832-01

o RACF Manuals

 CA Technologies Manuals (available at support.ca.com)

o CA Technologies Integrity Statement for All of Their Software Products
(http://arcserve.com/~/media/Files/TechnicalDocuments/common-integrity-
statement.pdf)

o CA Auditor Manuals

o CA Compliance Manager Manuals

o CA ACF2 Manuals

o CA Top Secret Manuals

 On MVS security architecture: www.stuhenderson.com

 About the Author: Stu Henderson is an experienced system programmer,
auditor, trainer, and consultant, specializing in IBM mainframe computers. He is
editor of the RACF User News and the online Mainframe Audit News. He
teaches seminars nationwide, both public sessions and in-house. His website
www.stuhenderson.com contains a wealth of articles and useful links.

This document is copyright © 2011 Stuart C. Henderson

Due to the nature of this material, numerous hardware and software products have been mentioned by name. In
the majority, if not all, of the cases, these product names are claimed as trademarks by the companies that
manufacture the products. Likewise, company logos, graphics or screen shots have been reproduced with the
consent of the owner and are subject to that owner’s copyright.

While every care has been taken in the preparation of this document to ensure that the information is correct, the
publishers cannot accept responsibility for any errors or omissions.

http://www.support.ca.com/
http://arcserve.com/~/media/Files/TechnicalDocuments/common-integrity-statement.pdf
http://arcserve.com/~/media/Files/TechnicalDocuments/common-integrity-statement.pdf
http://www.stuhenderson.com/
http://www.stuhenderson.com/

